top of page

Grupo de Análise de Mercado

Público·15 membros

Celestial Navigation For Deck Officers And For ...

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space (or on the surface of the Earth) without having to rely solely on estimated positional calculations, commonly known as "dead reckoning", made in the absence of satellite navigation or other similar modern electronic or digital positioning means.

Celestial navigation for deck officers and for ...

Celestial navigation uses "sights", or timed angular measurements, taken typically between a celestial body (e.g. the Sun, the Moon, a planet, or a star) and the visible horizon. Celestial navigation can also take advantage of measurements between celestial bodies without reference to the Earth horizon, such as when the Moon and other selected bodies are used in the practice called "lunars" or lunar distance method, used for determining precise time when time is unknown.

An example illustrating the concept behind the intercept method for determining one's position is shown to the right. (Two other common methods for determining one's position using celestial navigation are the longitude by chronometer and ex-meridian methods.) In the adjacent image, the two circles on the map represent lines of position for the Sun and Moon at 12:00 GMT on October 29, 2005. At this time, a navigator on a ship at sea measured the Moon to be 56 above the horizon using a sextant. Ten minutes later, the Sun was observed to be 40 above the horizon. Lines of position were then calculated and plotted for each of these observations. Since both the Sun and Moon were observed at their respective angles from the same location, the navigator would have to be located at one of the two locations where the circles cross.

Practical celestial navigation usually requires a marine chronometer to measure time, a sextant to measure the angles, an almanac[2] giving schedules of the coordinates of celestial objects, a set of sight reduction tables to help perform the height and azimuth computations, and a chart of the region. With sight reduction tables, the only calculations required are addition and subtraction. Small handheld computers, laptops and even scientific calculators enable modern navigators to "reduce" sextant sights in minutes, by automating all the calculation and/or data lookup steps.[3] Most people can master simpler celestial navigation procedures after a day or two of instruction and practice, even using manual calculation methods.

Modern practical navigators usually use celestial navigation in combination with satellite navigation to correct a dead reckoning track, that is, a course estimated from a vessel's position, course and speed. Using multiple methods helps the navigator detect errors and simplifies procedures. When used this way, a navigator from time to time measures the Sun's altitude with a sextant, then compares that with a precalculated altitude based on the exact time and estimated position of the observation. On the chart, one uses the straight edge of a plotter to mark each position line. If the position line indicates a location more than a few miles from the estimated position, more observations can be taken to restart the dead-reckoning track.

In the event of equipment or electrical failure, taking Sun lines a few times a day and advancing them by dead reckoning allows a vessel to get a crude running fix sufficient to return to port. One can also use the Moon, a planet, Polaris, or one of 57 other navigational stars to track celestial positioning.

An older but still useful and practical method of determining accurate time at sea before the advent of precise timekeeping and satellite-based time systems is called "lunar distances", or "lunars", which was used extensively for a short period and refined for daily use on board ships in the 18th century. Use declined through the middle of the 19th century, as better and better timepieces (chronometers) became available to the average vessel at sea. Although most recently only used by sextant hobbyists and historians, it is now becoming more common in celestial navigation courses to reduce total dependence on GNSS systems as potentially the only accurate time source aboard a vessel. Destined for use when an accurate timepiece is not available or timepiece accuracy is suspect during a long sea voyage, the navigator precisely measures the angle between the Moon and the Sun, or between the Moon and one of several stars near the ecliptic. The observed angle must be corrected for the effects of refraction and parallax, like any celestial sight. To make this correction, the navigator measures the altitudes of the Moon and Sun (or star) at about the same time as the lunar distance angle. Only rough values for the altitudes are required. A calculation with suitable published tables (or longhand with logarithms and graphical tables) requires about 10 to 15 minutes' work converting the observed angle(s) to a geocentric lunar distance. The navigator then compares the corrected angle against those listed against the appropriate almanac pages for every three hours of Greenwich time, using interpolation tables to derive intermediate values. The result is a difference time between the time source (it being of unknown time) used for the observations, and the actual prime meridian time (that of the "Zero Meridian" at Greenwich also known as UTC or GMT). Now knowing UTC/GMT, a further set of sights can be taken and reduced by the navigator to calculate their exact position on the Earth as a local latitude and longitude.

The considerably more popular method was (and still is) to use an accurate timepiece to directly measure the time of a sextant sight. The need for accurate navigation led to the development of progressively more accurate chronometers in the 18th century (see John Harrison). Today, time is measured with a chronometer, a quartz watch, a shortwave radio time signal broadcast from an atomic clock, or the time displayed on a satellite time signal receiver.[4] A quartz wristwatch normally keeps time within a half-second per day. If it is worn constantly, keeping it near body heat, its rate of drift can be measured with the radio and, by compensating for this drift, a navigator can keep time to better than a second per month. When time at the prime meridian (or another starting point) is accurately enough known, celestial navigation can determine longitude, and the more accurately latitude and time are known, the more accurate is the longitude determination. The angular speed of Earth is latitude-dependent. At the poles, or latitude 90, the rotation velocity of Earth reaches zero. At latitude 45 one second of time is equivalent in longitude to 1,077.8 ft (328.51 m), or one-tenth of a second means 107.8 ft (32.86 m).[5] At the slightly bulged-out equator, or latitude 0, the rotation velocity of Earth or its equivalent in longitude reaches its maximum at 465.10 m/s (1,525.9 ft/s).[6]

While celestial navigation is becoming increasingly redundant with the advent of inexpensive and highly accurate satellite navigation receivers (GNSS), it was used extensively in aviation until the 1960s, and marine navigation until quite recently. However; since a prudent mariner never relies on any sole means of fixing their position, many national maritime authorities still require deck officers to show knowledge of celestial navigation in examinations, primarily as a backup for electronic/satellite navigation. One of the most common current usages of celestial navigation aboard large merchant vessels is for compass calibration and error checking at sea when no terrestrial references are available.

The United States Naval Academy (USNA) announced that it was discontinuing its course on celestial navigation (considered to be one of its most demanding non-engineering courses) from the formal curriculum in the spring of 1998.[11] In October 2015, citing concerns about the reliability of GNSS systems in the face of potential hostile hacking, the USNA reinstated instruction in celestial navigation in the 2015 to 2016 academic year.[12][13]

At another federal service academy, the US Merchant Marine Academy, there was no break in instruction in celestial navigation as it is required to pass the US Coast Guard License Exam to enter the Merchant Marine. It is also taught at Harvard, most recently as Astronomy 2.[14]

Celestial navigation continues to be used by private yachtsmen, and particularly by long-distance cruising yachts around the world. For small cruising boat crews, celestial navigation is generally considered an essential skill when venturing beyond visual range of land. Although satellite navigation technology is reliable, offshore yachtsmen use celestial navigation as either a primary navigational tool or as a backup.

A variation on terrestrial celestial navigation was used to help orient the Apollo spacecraft en route to and from the Moon. To this day, space missions such as the Mars Exploration Rover use star trackers to determine the attitude of the spacecraft.

As early as the mid-1960s, advanced electronic and computer systems had evolved enabling navigators to obtain automated celestial sight fixes. These systems were used aboard both ships and US Air Force aircraft, and were highly accurate, able to lock onto up to 11 stars (even in daytime) and resolve the craft's position to less than 300 feet (91 m). The SR-71 high-speed reconnaissance aircraft was one example of an aircraft that used a combination of automated celestial and inertial navigation. These rare systems were expensive, however, and the few that remain in use today are regarded as backups to more reliable satellite positioning systems.

Intercontinental ballistic missiles use celestial navigation to check and correct their course (initially set using internal gyroscopes) while flying outside the Earth's atmosphere. The immunity to jamming signals is the main driver behind this seemingly archaic technique. 041b061a72


Bem-vindo ao grupo! Você pode se conectar com outros membros...
bottom of page